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Abstract. Diffraction of thermal velocity metastable atoms by non-magnetic and magnetic reflection grat-
ings of micrometric period has been observed. This observation is made possible by the use of an ultra
narrow beam generated by metastability exchange. Grazing incidence angles are exploited to minimise the
quenching of metastable atoms on the grating surface. Potential applications are beam splitting, atom
holography and probing of micro-sized solid surfaces.

PACS. 03.75.-b Matter waves – 68.49.Bc Atom scattering from surfaces (diffraction and energy transfer)
– 75.70.Rf Surface magnetism

1 Introduction

Since the tremendous development of laser cooling tech-
niques, ultra cold atoms and even Bose Einstein Conden-
sates have been intensively used in atomic physics to ex-
hibit coherent properties of an atom ensemble. The reason
for this is that the cooling process provides atomic samples
with some remarkable coherence properties (in particular,
the de Broglie (dB) wavelength of cold atoms can be of
several µm). One example is atomic diffraction in the re-
flection mode (so-called atom holography) that had been
demonstrated by Shimizu and Fujita [1] using falling ul-
tra cold metastable neon atoms (2p53s, 3P0) with a mean
velocity of 3 m s−1.

In this article, we demonstrate that the use of ultra
cold atoms is not essential to observe atomic diffraction
by micro-period reflection gratings. This is important be-
cause micro-fabricated reflection-mode gratings for ther-
mal velocity atoms add a new tool to the field of atom
optics. Since the thirties, a number of atomic diffraction
experiments have been carried out with thermal ground
state atom beams (alkalis and rare gases, H2 molecules)
and oriented crystal surfaces as a diffracting object (see
e.g. [2–5]). In these experiments the diffraction is due to
the periodic interaction at small distances (∼0.1 nm) be-
tween the incident atom and the crystal atom lattice. On
another hand, few atom optics experiments have been run
with fast ground-state atoms diffracted by artificial struc-
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tures of a micrometric or a nanometric size. Examples are
(i) the diffraction by a 200 nm period transmission grat-
ing of sodium atoms seeded in a supersonic beam of argon
and its application to atomic interferometry [6]; (ii) the
determination of atom-surface van der Waals (vdW) in-
teraction from the diffraction intensities produced by a
100 nm period transmission grating [7].

In this type of experiment the use of metastable
rare gas atoms provides some important advantages: (i)
such atoms are easily produced (with, actually, rather
low fluxes), (ii) they are detected with a high efficiency
(∼30%) and can be imaged on a position sensitive de-
tector, (iii) the vdW atom-solid interaction at mean dis-
tance (0.5–100 nm) is more intense than for ground state
species, a property that has been exploited in elastic [8,9]
and inelastic [10] diffraction experiments with metastable
atoms (He∗, Ne∗, Ar∗) and a 100 nm period transmission
grating. Because of the smallness of the dB wavelength
(∼0.01 nm), grating-periods of a few 100 nm are needed
to get resolvable diffraction peaks. Such transmission grat-
ings are not easy to produced, fragile, rather expensive and
difficult to acquire.

On the contrary, reflection gratings with periods of
about 1 µm are easier to make and, as we show here, are
suitable to diffract fast atoms under certain conditions.
We have performed an experiment in which a metastable-
atom supersonic beam (He∗, Ne∗, Ar∗) at thermal en-
ergy (E0 ∼ 64 meV) is diffracted by different types of
reflection gratings (magnetized or not). The evidence of
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Fig. 1. Principle scheme of the experiment.
The incoming He∗ wave packet (transverse
coherence radius Rc, longitudinal coher-
ence length Lc) hits the grating (period
Λ) at an incident angle θi. It is scattered
in directions θ, with respect to the grating
plane.

1D diffraction of fast metastable atoms is shown. Such
a diffraction effect splits the initial atomic wave packet
into a coherent superposition of elastically scattered wave
packets. It is likely however that the coherence of this su-
perposition is not perfect because surface roughness and
random surface micro-motions are expected to induce a
de-coherence especially at grazing incidence. A simulation
of this effect (which will be detailed below) shows that
diffraction peaks are preserved up to order 3, at least for a
rms roughness magnitude not exceeding 3 nm (the manu-
facturer gives, for the gratings used in this work, 1–2 nm).
Hence at low diffraction orders, the grating acts as a co-
herent beam splitter, which can then be used for atomic
interferometry with reflection gratings as proposed, for ex-
ample, in [11]. Similar features have already been studied
in reflection-mode diffraction of atoms by evanescent light
waves [12]. In Section 2, we will focus on the atomic source,
then we will describe how we use its specific properties to
study diffraction of metastable atoms by reflection grat-
ings. We give here experimental details for the case of He∗
atoms (1750 m/s) and report results for Ne∗ (780 m/s) and
Ar∗ (560 m/s) atoms. Results obtained with non-magnetic
and magnetic gratings are presented and discussed in Sec-
tion 3. Conclusions and perspectives are given in Section 4.

2 Experiment

2.1 Atom source

Campargue-type nozzle beams [13] are characterized by a
low translational temperature (a few K), leading to nar-
row velocity distributions, both in direction and modu-
lus. In addition, atomic trajectories in the so-called free
zone are issued from an effective source, the diameter of
which is significantly smaller than that of the real noz-
zle (in the present case 15 µm instead of 50 µm). These
remarkable properties of ground state atomic beams can
be transferred, without almost any loss, to metastable
atoms using the resonant metastability exchange process
He∗ + He → He + He∗. This technique has been described
in detail elsewhere [8].

For this experiment, we use such a beam of metastable
Helium atoms He∗. After two collimation holes (80 µm
and 100 µm, respectively located at 116 mm and 395 mm
from the nozzle), we end with a beam of metastable

He∗ atoms (1S0, 3S1) whose characteristics are as fol-
lows: the mean longitudinal velocity 〈v〉 is 1750 m s−1

(δv/v ∼ 1.5% (FWHM) leading to a longitudinal δv of
about 17–34 m s−1) which corresponds to a longitudi-
nal de Broglie wavelength λ‖ = 0.057 nm and a kinetic
energy E0 = 64 meV. One can then estimate the size
of the atomic wave packet (the longitudinal coherence
length Lc) to be Lc = λ‖v/δv which gives Lc ∼ 2.8–
5.7 nm for the He∗ beam. The angular aperture of the
beam (FWHM) is δθ ≈ 0.35 mrad which corresponds to
a rms transverse velocity of 60 cm s−1. Such a transverse
velocity leads to a mean transverse de Broglie wavelength
λ⊥ ≈ 163 nm. From the value of δθ one can derive, using a
umbra–penumbra method, the effective source diameter to
be about 15 ± 5 µm. This relatively small diameter orig-
inates from the nozzle expansion mechanism: rectilinear
atomic trajectories within the so-called “zone of silence” or
“Mach bottle” seem to be issued from an effective source
located at a few mm upwards the nozzle [13]. Its diameter
is about 1/3 of the nozzle diameter at least when the noz-
zle beam is properly operating. Because of the small size
of this source, an almost perfectly defined velocity vector
is present at each point of the grating illuminated by the
beam.

2.2 Experimental requirements

The experiment we describe here is quite simple in its
principle. He∗ metastable atoms are sent on a reflection
grating of a few µm period and one looks at the diffraction
pattern (see Fig. 1). However, the experimental realisation
of such an easy principle is not trivial. In the following, we
point out the main problems of such an experiment and
show how we managed to overcome them.

The first limitation of this experiment is the reflection
factor of metastable atoms hitting a metallic object. It
is well known that metastable atoms are quenched into
the ground state as soon as their outer electronic orbital
overlaps the electronic orbitals of the solid [14]. The prob-
ability of this quenching process is very close to 1 as soon
as the distance between the surface (here the grating) and
the metastable atom (here He∗) is less than 1 nm. Never-
theless, even at the energy involved in this experiment
(64 meV), a small fraction (10−4–10−5) of metastable
atoms can survive the quenching process and be reflected
by the repulsive part of the atom surface potential. It is
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worth noticing that the quenching probability increases
rapidly when the component of the atom velocity along
the normal to the surface increases. In other words, the
highest atom reflectivity is obtained when the angle be-
tween the He∗ beam and the grating is as small as possi-
ble and that is one of the reasons why the experiment is
performed at grazing incidence. Of course, long counting
times are also needed to get a good signal-to-noise ratio.

The second important point is the angular definition of
the experiment. When considering an initial wave packet
hitting the reflection grating (period Λ) at a given grazing
incidence θi (see Fig. 1), the phase condition on the scat-
tered wave packets imposes that the atomic signal is only
expected at angles θN (with respect to the grating plane)
fulfilling the condition

cos θN = cos θi − N
λ‖
Λ

(1)

where λ‖ is the longitudinal de Broglie wavelength and
N is the diffraction order. For the small incident angles
considered here, equation (1) becomes

θ2
N ≈ θ2

i + 2N
λ‖
Λ

. (2)

Typical experimental parameters are θi ≈ 7 mrad, Λ =
2 µm and, for He∗ atoms, λ‖ = 0.057 nm. Under these
conditions, θN ranges from 7 to 14.8 mrad for N = 0 to 3.
In order to resolve such close diffraction peaks, the overall
resolution has to be better than 2 mrad. This condition is
a priori fulfilled since the incident supersonic beam angu-
lar divergence is δθ ≈ 0.35 mrad, and the resolution of the
position-sensitive detector is about 0.01 mrad. It will be
still fulfilled after the treatment of the data which enlarges
the angular spread up to ∆θ = 1 mrad FWHM.

It appears very important to know the θi value with
accuracy in order to derive θN angles. At least for He∗
atoms, diffraction peaks only exist for N � 0 (otherwise
Eq. (2) would give θ2 < 0). The first observable diffraction
peak is then the N = 0 order (specular reflection). Notice
that θN=0 diffraction angle is the only one which does
not depend on the incoming atom wavelength. This has
been indeed observed by comparing He∗, Ne∗ and Ar∗
diffraction patterns. From these experiments, we get θi =
7 ± 0.3 mrad.

Another important condition to observe diffraction ef-
fects is that the transverse coherence length of the wave
packets covers several periods of the grating. As we are
at grazing incidence, the effective transverse period of the
grating, Λθi, is much smaller than Λ e.g. 14 nm instead
of 2000 nm, for θi ∼ 7 mrad. The transverse coherence
radius of our He∗ beam can be evaluated according to the
van Cittert–Zernike theorem to be Rc = 1660 nm [8]. This
means that, in the transverse plane, more than 100 slits
can be covered by an incoming atomic wave packet.

Diffraction peaks are related to in-phase diffraction
amplitudes. The last condition to observe them is that
the outgoing wave packets scattered by consecutive grat-
ing periods do overlap each other. Actually wave packets
spread when propagating, as Lc[1 + (2z/k‖L2

c)
2], where z

Fig. 2. Simulation of the effects of different random roughness
(rms value σ = 2, 3 and 5 nm (see text)) on the diffraction
pattern of He∗ on a reflection-grating of Λ = 2 µm. The most
contrasted pattern is obtained for σ = 2 nm, the less contrasted
one for σ = 5 nm. However, for σ � 3 nm, one can clearly see
diffraction peaks up to order 3. For the gratings used in these
experiments, the manufacturer gives σ � 2 nm.

is the propagation distance, k‖ the longitudinal wave num-
ber and Lc the longitudinal coherence length as defined
before (Lc = λ‖v/δv). Consequently the packets contain
an increasing number of wavelengths. Nevertheless their
overlap does not depend on the distance along which they
propagate. Then the condition of overlapping can be sim-
ply written as –Lc < ∆ < Lc where ∆ = Nλ‖ is the path
difference between two in-phase outgoing wave packets, N
being an integer. Here we can observe an in-phase scat-
tered signal only for N < 50–100. Such maximum diffrac-
tion orders are far above the experimental range. One can
notice that the observable diffraction orders depend on
the quality of the velocity distribution (δv/v) since the
overlapping condition can also be written N < v/δv. This
means that, as expected, the more monokinetic the beam
is, the more orders of diffraction are seen.

Finally, we have to consider the problem of the grating
surface roughness. A simulation of the roughness effect can
be carried out considering a random height ξ of the reflect-
ing surface above an ideal plane, the distribution of which
is Gaussian, with a standard deviation σ. This roughness
generates a random phase η = δk ξ, where δk ≈ kθ is the
momentum change along the normal to the surface, θ be-
ing the scattering angle. The η-standard deviation is then
kθσ. As a function of the total phase shift Φ + η, where
Φ ≈ 1

2Λk(θ2−θ2
i ) refers to an ideal grating of period Λ, the

intensity becomes a random signal I(Φ + η). The statisti-
cal average of this signal is Ī(Φ) =

∫ +∞
−∞ I(Φ + u)g(u)du,

where g(u) is the Gaussian probability density of η. Here
I(Φ) represents the diffraction pattern of the ideal grating,
which is actually an interference pattern produced by p
active mirrors (p � 1). The contrast of the fringes, equal
to the degree of coherence, is 1 in this ideal case. How-
ever, the diffraction pattern is damaged by roughness: the
contrast (or visibility) is reduced. Figure 2 shows resulting
diffraction patterns for He∗ atoms (k = 5.83 a.u.), with
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σ = 2 nm, 3 nm and 5 nm. It is seen that for σ � 3 nm
(the manufacturer gives σ = 1–2 nm), diffraction peaks
remain visible up to order 3.

2.3 Experimental device

The experimental set up is the following: the metastable
atom supersonic beam is twice collimated as mentioned
before. The grating is set at 597 mm from the nozzle (the
point-like atomic source of the experiment) on a rotating
holder which allows us to tune the incidence angle (θi) of
the beam on the grating from 0 to 10 mrad. We detect
the signal on a position-sensitive detector which is set at
1396 mm from the nozzle. This detector consists of a mul-
tichannel electron multiplier followed by a phosphor screen
and a CCD camera. The estimated overall spatial resolu-
tion is 7 µm which corresponds to an angular resolution
of 0.01 mrad.

The home-made reflection gratings used here present
several advantages: (i) they are inexpensive, (ii) the size
of reflecting structures is relatively large (typically hun-
dreds of nm), (iii) a wide variety of shapes and sizes are
available (this type of fabrication has already been used
by Shimizu et al. [1] in atom holography experiments),
(iv) deposited structures are controlled using an atomic-
force microscope, (v) the technique is usable with various
non-magnetic and magnetic materials. The non-magnetic
reflection grating used here (called in the following G1)
consists of thin bars of aluminium deposited on a sili-
con substrate through a resist mask realized by electron
beam lithography in a scanning electron microscope (lift-
off technique [15]). The width of the bars is 500 nm, their
thickness is 30 nm and the separation between two con-
secutive bars is 1500 nm (period Λ = 2 µm). The bars
are set perpendicular to the atomic beam axis so that
atoms are expected to diffract in the vertical direction
(Fig. 1). The “magnetic” grating consists of thin stripes
of Permalloy (thickness e = 30 nm, width w = 1500 nm,
period Λ = 1800 nm) deposited on a silicon substrate. The
technique of deposition combines electron-beam lithogra-
phy and ion-beam etching [16]. The Permalloy material
is known to have a high relative magnetic permeability
(µ > 8000) and a small residual magnetisation. This lat-
ter property is important since it will allow to use this
grating as a non-magnetic structure (called G2) when no
external magnetic field is applied, or as a magnetised one
(G2m) as soon as a magnetic field is applied. One can see
a Scanning Electron Micrograph (SEM) of grating G2 in
Figure 3.

3 Results and discussion

3.1 Non-magnetic gratings

An angular diffraction pattern is obtained for He∗ atoms,
at θi ≈ 7 mrad, with grating G1. It consists of 500 ac-
cumulated images. A vertical cut of the pattern is taken

Fig. 3. Scanning Electron Micrograph of the magnetic grating
G2 (see text) of period Λ = 1.8 µm and width w = 1.5 µm.

(see Fig. 4a). A background signal due to the CCD de-
vice (about 10 counts/image) is subtracted. A smooth-
ing averaging method is used to better extract diffraction
peaks from the residual background signal. Indeed it re-
duces the statistical noise by a factor 3.9. Its counterpart
is to add 0.7 mrad to the angular width (originally of
about 0.4 mrad) of the diffraction peaks. Only positive
angles are shown as atoms can only diffract in the as-
cendant direction. Indeed, the grating acts as a mask for
atoms diffracting downwards. Angles smaller than 5 mrad
have been ignored because of the very high magnitude of
the central peak (a few thousands times the diffraction
peak magnitudes) and possible diffraction effects due to
the edge of the grating holder. One can clearly see diffrac-
tion peaks in Figure 4a (vertical arrows). The same exper-
iment has been carried out with Ne∗ and Ar∗ beams (see
Figs. 4b and 4c).

According to formula (2), one can then plot the loca-
tion θ2

N of diffraction peaks as a function of the diffraction
order N . These locations should then lie on a straight line
passing through the point θ2

0 = θ2
i , the slope of which is

2 λ‖/Λ. In Figure 5 the results are shown for He∗ (full
triangles), Ne∗ (full squares) and Ar∗ (open circles), to-
gether with predicted straight lines. The agreement can
be considered as rather good, the remaining discrepancy
being probably due to errors in the largest scattering an-
gle determination (θN angles are measured at ±0.5 mrad,
which leads to an uncertainty of ±17.3 mrad2 on θ2

N at
θ2

N = 300 mrad2). Similar results are obtained with the
demagnetised magnetic grating (G2). They will be dis-
cussed further in view of a comparison with those given
by the magnetised version of the same grating (G2m).

As in the case of transmission gratings, the diffrac-
tion amplitude is the product of a universal grating am-
plitude, sin[(p + 1)ϕ/2]/sin[ϕ/2], where p is the number
of active slits and ϕ the phase-shift between 2 consecutive
slits, by the diffraction amplitude of a single slit, or a sin-
gle stripe in our case. Only this latter amplitude involves
the atom-solid interaction. It appears in the diffraction
pattern as an envelope of the grating diffraction peaks.
For non-magnetic gratings, the atom-metal interaction at
mean distance (0.5–100 nm) is of the van der Waals type.
In the case of metastable helium atoms (He∗ 2 3,1S1,0)
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(a)

(b) (c)

Fig. 4. (a) Spectrum of the vertical angular distribution of a 1750 ms−1-He∗ beam, diffracted by a non magnetic reflection
grating (G1, period Λ = 2 µm). Only positive angles, larger than 5 mrad, are shown (see text). Diffraction peaks are indicated
by vertical arrows. The peak at zero angle (not shown) corresponds to atoms passing above the grating; its intensity is about
1000 times larger than diffraction peaks. Two steps of averaging are shown (open circles data are issued from an adjacent
averaging 1.6 times stronger than the weak averaging used to obtain the full squares data). The uniform vertical error bar
(±11 counts) represents the spreading of data points before final averaging. The horizontal bar represents the convolution
window due essentially to the averaging process (∆θ = 1 mrad). Full line: calculated diffraction pattern including the vdW
potential effect and the averaging process. (b) Spectrum of the vertical angular distribution of a 780 ms−1-Ne∗ beam, diffracted
by grating G1 (period Λ = 2 µm). (c) Spectrum of the vertical angular distribution of a 560 ms−1-Ar∗ beam, diffracted by
grating G1 (period Λ = 2 µm).

Fig. 5. Location of diffraction peaks produced by grating G1
(see text), in a diagram (θ2, N) where N is the diffraction
order. He∗ (full triangles: data; full line: theoretical prediction).
Ne∗ (full squares: data; dashed line: theoretical prediction).
Ar∗ (open circles: data; dotted line: theoretical prediction).
The value θ2(N = 0) = θ2

i = 49 mrad2 is independent of the
atomic wavelength and then identical for the 3 atoms. Error
bar at a given angle θ is 2θ∆θ. The spatial detector limit is
θlim = 15 mrad, i.e. θ2

lim = 225 mrad2.
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this attractive interaction is essentially scalar, decreasing
as x−3, where x is the atom-surface distance (see Fig. 1).
At short distance, because of the overlap of the atomic
external orbital with metal-electron orbitals, the interac-
tion becomes a repulsive one (in x−9 in average). It should
be noticed that this potential, responsible for the reflec-
tion, has the same distance range as the coupling respon-
sible for the quenching of the metastable atoms. The to-
tal He∗ atom-metal interaction V (x) has been calculated
using the van der Waals constant C3 = 1.31 a.u. (i.e.
1.27 kHz µm3) derived from diffraction data [8,9] and, for
the repulsive contribution, a transposition of the Zaremba
and Kohn method [17] to the case of He∗ [10]. The quan-
tity U(x) = 2mV (x), where m is the atomic mass, is given
(in atomic units) by:

U(x) = −1.9225× 104x−3 + 2.46702× 109x−9 (3)

(see Fig. 6a). In a transmission configuration, the semi-
classical phase-shift related to a given trajectory is rather
easy to evaluate because a rectilinear unperturbed tra-
jectory can be considered as a zero-order approximation.
Such a reference is no longer available in the reflection
mode where the distance of closest approach depends on
the angles (θ, θi) under consideration. The problem is
greatly simplified when the repulsive part of the inter-
action is assimilated to an infinite wall located at a finite
distance x0 (here x0 ≈ 7.1 a.u.). Indeed in such a case the
distance of closest approach is identical to x0 and an at-
tractive potential W (ξ), symmetric in ξ = x − x0, can be
used to evaluate the phase-shift. This phase-shift, φ(X, Z),
is between a trajectory (2 branches asymptotically in-
clined by θ and θi) passing by a point of co-ordinates X
(normal to the surface) and Z (parallel to the surface),
and a similar trajectory passing by point (0, 0). It can be
written as:

φ(X, Z) ≈ k‖(cos θ − cos θi)Z

+ [K(ξ) − k‖]ξ(sin θ + sin θi) (4)

where K(ξ) = ν(ξ)k‖, ν being the semi-classical index:
ν(ξ) ≈ [1 + W (ξ)/k2

‖]
1/2. For He∗ atoms, k‖ = 5.83 a.u.

The amplitude diffracted by one stripe is then:

f(θ) ∝
+∞∫

−∞
dX

+w/2∫

−w/2

dY exp[iφ(X, Y )]

= w
sin[(cos θ − cos θi)k‖w/2]

(cos θ − cos θi)k‖w/2

×
−∞∫

−∞
dξ exp[ik‖(sin θ + sin θi)(ν(ξ) − 1)ξ] (5)

where w (500 nm for G1, 1500 nm for G2) is the width of
the stripe. The calculated diffraction pattern of He∗ atoms
for grating G1 at an incidence θi = 7 mrad is shown in
Figure 4 together with experimental data. This calcula-
tion takes in account the finite angular spread, using a

(a)

(b)

Fig. 6. (a) Reduced atom-surface potential U (see text) across
a bar (z-coordinate) of non-magnetic grating (G1), as a func-
tion of the distance x to the surface. (b) Reduced magnetic
potential Um (see text) across the gap between two consecu-
tive magnetic bars (z-coordinate) (grating G2m), as a function
of the distance x to the surface.

convolution by a Gaussian profile. The agreement can be
considered as rather satisfactory owing to the huge sim-
plifications introduced in the calculation (infinite abrupt
wall, zero interaction outside the stripe) and to the exper-
imental uncertainties.

3.2 Magnetic grating

The grating, the plane (y, z) of which is almost horizontal,
is placed within a vertical homogeneous static magnetic
field B0 (250 G in magnitude), parallel to x-axis. Assum-
ing a linear response, the magnetisation M is collinear to
B0 and it is given by: µ0M ≈ (1 − µ0/µ)B ≈ B where
B is the total magnetic field. The field B′ generated by
a stripe can be obtained from the surface-current density
J = M × n where n is the outer normal to the solid. J is
anti-parallel to y-axis on the gap border z = 0 and parallel
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to it on the border z = w. The components of B′ are eas-
ily derived in the form: B′

x = BF (x, z); B′
z = BG(x, z),

where F and G are well defined analytic functions:

F = (2π)−1[Arctg[x/z] + Arctg[(e − x)/z]
− Arctg[x/(z − w)] − Arctg[(e − x)/(z − w)]]

G = (4π)−1Log
[

x2 + z2

e2 + z2 − 2ex + x2

×e2 + (z − w)2 − 2ex + x2

x2 + (z − w)2

]

. (6)

The unknown value of B appears as the positive root
of the equation: B2 = B2G2 + (B0 + BF )2, namely
B = B0[(1 − G2)1/2 + F ]/(1 − F 2 − G2). This read-
ily gives B′ = B(F 2 + G2)1/2. Once the He∗(2 3S1)
atom, in its magnetic sub-level M = −1, is entered into
the homogeneous field B0 (with a negligible loss of ki-
netic energy), it experiences a repulsive magnetic poten-
tial Vm = +|g|µBB′, where g = −2 is the Landé factor
and µB the Bohr magneton. The magnitude of B′ is ev-
erywhere large enough to ensure an adiabatic evolution of
the atomic spin. The shape of the product Um = 2mVm,
where m is the atom mass, is shown in Figure 6b. It is seen
that the potential is sharply peaked along both edges of
the 300 nm gap between two magnetised stripes, with a
magnitude higher than the normal kinetic energy. This
can be viewed, in a very simplified approach, as making
atoms rebound on 2 narrow mirrors (the width of which is
a few 10 nm) placed along both edges of a gap. Under such
condition, the single-structure diffraction pattern is the
counterpart, in the reflection mode, of the 2 Young’s slit
interference pattern. It yields the envelop of the com-
plete grating diffraction pattern. In Figure 7, experimental
and calculated diffraction patterns produced by non-
magnetised (G2) and magnetised (G2m) versions of the
same grating, are compared. The calculation for G2 is the
same as that already given for G1, whereas the calculation
for G2m uses the simple previous model. The most strik-
ing feature is the observed strong reduction of the order
2 induced by the magnetic potential, as predicted by the
theoretical calculation.

4 Conclusion and perspectives

We have demonstrated, for the first time to our knowledge,
the 1D-diffraction of thermal velocity metastable rare gas
atoms by non-magnetic and magnetic micro-metric reflec-
tion gratings. In spite of fundamental difficulties (high
quenching factor of metastable atoms hitting the grat-
ing, smallness of the de Broglie wavelength of fast atoms),
the occurrence of the phenomenon is experimentally clear.
Although the phenomenon was theoretically predictable,
it was important to show experimentally that diffraction
of fast atoms by micro-metric reflection gratings, and not
only that of cold atoms, is indeed observable. Experiments
using 2D-gratings, which produce 2D-diffraction patterns
observable on a position-sensitive detector, are in progress.

Fig. 7. Spectra of the vertical angular distribution of a
1750 ms−1-He∗ beam diffracted by a magnetic reflection grat-
ing (period Λ = 1.8 µm). The grating (G2m) is magnetized
by a uniform field of 250 G (open circles: experimental data;
dotted line: calculated diffraction pattern) or not magnetized
(G2) (full squares: data; full line: calculated diffraction pat-
tern). One may notice that when the magnetic field is applied,
the second diffraction order is strongly reduced (see text).

They are expected to be a preliminary step towards fast
atom holography in the reflection mode.

At a more practical level, this demonstration is useful
because reflection gratings do not need to be structured
at a nano-metric scale, and they are far easier to produce
(and buy) than nano-transmission gratings. Experimen-
talists thinking of coherent splitting of a fast atom beam
using elastic diffraction can now consider using fabricated
reflection gratings. It is worth noticing that “fast” atoms
(i.e. atoms at thermal velocity) are not necessarily the
best candidates. Slower atoms present some advantages,
but the point here is that moderate velocities (a few tens
of m/s), not very small ones, would be quite convenient
for this type of experiments.

The same kind of technique can be used as a probe of
the grating surface. Indeed, as the diffraction pattern de-
pends on the surface potential, one can obtain information
about various atom-surface interactions (van der Waals
and Casimir Polder interactions, magnetic interaction,
etc.). This information is contained in the envelope of the
diffracted peaks, which remains so far difficult to estimate
because of the low signal due to the quenching factor,
at least in the case of non-magnetic surfaces. In spite of
that, we have shown here the feasibility of such a treat-
ment. Overcoming this difficulty, for instance by slowing
the atoms down to a moderate velocity, 1D and 2D diffrac-
tions of atoms by micro-metric reflection gratings appear
to be a very interesting tool for atom-surface interaction
spectroscopy. Another way to eliminate the quenching ef-
fect would be to operate with a beam of ground state
atoms, and then use the metastability exchange process



474 The European Physical Journal D

to reveal and detect image diffraction or interference pat-
terns. This technique is expected to be feasible owing to
the efficiency of the metastability exchange in producing
the present incident beam.
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